HumanEval-XL: A Multilingual Code Generation Benchmark for Cross-lingual Natural Language Generalization

Qiwei Peng*, Yekun Chai*, Xuhong Li

Code Generation

For example:

The task can be formulated in different forms (e.g., code completion, variable/line infilling).

Motivation

- → Current benchmarks primarily focus on English for code generation, limiting the relevant evaluation of LLMs on cross-lingual transfer.
- → High quality cross-lingual (NL) code generation benchmark helps building better code generation models, leading to advanced code applications of global impact and easy access for people from different regions.

Challenge

- ★ Complexity of Task: Code generation involves understanding complex instructions and translating them into syntactically correct code—a challenge compounded when adding multiple languages.
- ★ Quality Assurance: Ensuring the translations maintain semantic integrity across languages is critical for the model's training and performance evaluation.
- ★ Consistent Evaluation: Developing a fair and unbiased evaluation metric across multiple languages and programming languages is crucial for true performance assessment.

Methods

- A. Text Extraction (**Stage 1**): We extract NL texts from the prompt.
- B. Translation and Back-Translation (**Stage 2**): The extracted texts are translated into 23 different languages using GPT-4. These translations are then back-translated to English for subsequent automatic quality checks.
- Quality Assessment with BERTScore (Stage 3): Stage 3 assesses translation quality by computing the BERTScore similarity score between the original English text and its back-translated text. Translations with a low similarity score (threshold < 0.95) are rejected and subjected to re-translation (max # of iter = 3).
- D. Quality Control (**Stage 4**): Heuristic checks and manual evaluations are performed on the quality of the translated texts.

Our dataset was constructed through a rigorous four-stage process including extraction of natural language prompts, translation to 23 languages, back-translation for quality check, and quality control using BERTScore.

Our Dataset: HumanEval-XL

Dataset	#Samples	#Average Test Cases	Data source	#PL	#NL	Parallel?
HumanEval (Chen et al., 2021)	164	7.7	Hand-written	1	1	×
MBPP (Austin et al., 2021)	974	3.0	Hand-written	1	1	×
APPS (Hendrycks et al., 2021)	10,000	13.2	Competitions	1	1	×
DSP (Chandel et al., 2022)	1,119	2.1	Github Notebooks	1	1	×
MTPB (Nijkamp et al., 2023b)	115	5.0	Hand-written	1	1	×
DS-1000 (Lai et al., 2023)	1,000	1.6	StackOverflow	1	1	×
Multlingual HumanEval (Athiwaratkun et al., 2023)	1,935	7.8	Hand-written	12	1	×
ODEX (Wang et al., 2022)	945	1.8	StackOverflow	1	4	×
HumanEval-XL	22,080	8.3	Hand-written	12	23	× .

HumanEval-XL consists of 80 parallel coding problems spanning 12 PLs and 23 NLs. In total, this benchmark includes 22,080 coding problems.

Family	Languages		
Afro-Asiatic	Arabic, Hebrew		
Austro-Asiatic	Vietnamese		
Austronesian	Indonesian, Malay, Tagalog		
Indo-European (Germanic)	English, Dutch, German, Afrikaans		
Indo-European (Romance)	Portuguese, Spanish, French, Italian		
Indo-European (Greek)	Greek		
Indo-European (Iranian)	Persian		
Slavic	Russian, Bulgarian		
Sino-Tibetan	Chinese		
Turkic	Turkish		
Uralic	Estonian, Finnish, Hungarian		

It spans across 11 distinct language families.

Experiments

→ We tested different models including CodeT5+, CodeGen2, GPT-3.5, and GPT-4.

Findings:

- Clear cross-lingual inconsistency.
- Increase in model size boosts performance.
- Specialized code pre-training plays a pivotal role in code generation.

Key Observations

• Despite advancements, LLMs struggle to maintain semantic consistency across different languages in the context of code generation.

• Increased model size correlates with improved performance, suggesting that scaling model parameters is beneficial for multilingual understanding.

Conclusion

- We propose **HumanEval-XL**, a massively multilingual code generation benchmark for assessing cross-lingual NL generation for LLMs.
- Our study reveals the **inconsistent cross-lingual transfer** of current LLMs (code/general), underscoring the significant challenge in achieving effective cross-lingual NL generalization.